This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Solvent Effects in Radical Copolymerization of Styrene with N, N-Dimethylacrylamide

Hisashi Fujihara^a; Masakuni Yoshihara^a; Toshihisa Maeshima^a ^a Department of Applied Chemistry Faculty of Science and Engineering, Kinki University, Kowakae Higashi, Osaka, Japan

To cite this Article Fujihara, Hisashi , Yoshihara, Masakuni and Maeshima, Toshihisa(1980) 'Solvent Effects in Radical Copolymerization of Styrene with N, N-Dimethylacrylamide', Journal of Macromolecular Science, Part A, 14: 6, 867 – 877

To link to this Article: DOI: 10.1080/00222338008068117 URL: http://dx.doi.org/10.1080/00222338008068117

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Solvent Effects in Radical Copolymerization of Styrene with N,N-Dimethylacrylamide

HISASHI FUJIHARA, MASAKUNI YOSHIHARA, and TOSHIHISA MAESHIMA

Department of Applied Chemistry Faculty of Science and Engineering Kinki University Kowakae, Higashi-Osaka, Japan 577

ABSTRACT

The radical copolymerization of N,N-dimethylacrylamide (I) with styrene (St) (M₁) was carried out in several solvents at 60 and 80°C. The monomer reactivity ratios were considerably affected by the reaction conditions. Linear correlationships were observed by plots of the values of both $\nu_{C=0}$ and $\nu_{C=C}$

stretching frequencies of I obtained in the solvents against those of log r_1 , log r_2 , $\Delta\Delta E^{\ddagger}$ (= $\Delta E_{11}^{\ddagger} - \Delta E_{12}^{\ddagger}$), and $\Delta\Delta S^{\ddagger}$ (= $\Delta S_{11}^{\ddagger} - \Delta S_{12}^{\ddagger}$). The values of both ΔE_{12}^{\ddagger} and ΔS_{12}^{\ddagger} were also determined.

INTRODUCTION

A number of investigations have been reported for the effect of solvent on the radical copolymerizabilities of vinyl monomers. Saini et al. reported that a strong influence of the solvent on the copolymer compositions was observed for the copolymerizations of styrene (St) or methyl methacrylate (MMA) with acrylamide [1], methacrylamide [2], and N-methylacrylamide [3], and that such phenomena were due to the influence of the solvent polarities on the amide-enol equilibrium because little solvent effect was observed on the copolymerizability of N,N-dimethylacrylamide (I) with vinyl monomers such as St and MMA [4].

Our recent work [5] has shown that the reactivity ratios were considerably influenced by the polymerization media in the copolymerization of St with 3(2-methyl)-6-methylpyridazinone which does not have any group capable of such amide-enol equilibrium. We have already postulated the hypothesis that the transition state might be stabilized by the specific solvation onto the carbonyl group of the pyridazinone ring [6].

In the present work, we give experimental evidence that in the copolymerization of I with St (M_1) the reactivity ratios are influenced by a wide variety of solvents.

EXPERIMENTAL

Materials

N,N-Dimethylacrylamide (I) was purified by distillation before use. Styrene (St) was also purified by distillation prior to use. Benzene, dioxane, acetonitrile, ethanol, and acetic acid were dried and purified by distillation according to the usual techniques before use.

Polymerization Procedure

All polymerizations were performed in degassed glass ampoules which were filled with dry monomers, solvent, and initiator. The polymerizations were stopped by pouring the tube content into an excess of petroleum ether. The yields obtained were invariably lower than 10%. The copolymers were purified by repeated reprecipitation from benzene and petroleum ether. No other impurities in the copolymers were determined by infrared and NMR analysis and by TLC. The compositions of the copolymers were determined by elementary analysis for nitrogen.

RESULTS AND DISCUSSION

The radical copolymerization of I with St (M_1) was carried out in various solvents (benzene, dioxane, acetonitrile, ethanol, and acetic acid) at 60 and 80°C. Table 1 summarizes the values of the monomer reactivity ratios (r) obtained on changing the solvent and the reaction conditions, implying some solvent effect in the reaction.

Solvent	Temp. (°C)	\mathbf{r}_1	r 2	e2	Q2
Benzene	60	1.23	0.39	0.06	0.41
	80	1.03	0.42	0.12	0.47
Dioxane	60	1.36	0.34	0.08	0.36
	80	1.11	0.32	0.21	0.40
CH₃CN	60	1.54	0.18	0.33	0.26
	80	1.25	0.22	0.34	0.32
C ₂ H ₅ OH	60	1.12	0.18	0.47	0.32
	80	1.00	0,19	0.49	0.36
СН₃СООН	60	0.76	0.12	0.75	0.38
	80	0.73	0.09	0.83	0.37

TABLE 1. Copolymerization Parameters of I with St^a

 ${}^{a}[M_{1}] + [M_{2}] = 1$ mole/liter.

It is interesting to note that the values of both log r_1 and log r_2 were nearly correlated with those of both $\nu_{C=0}$ and $\nu_{C=C}$ stretching frequencies of I determined in the corresponding solvents (Figs. 1 and 2). This seems to imply that the reactivity is essentially affected by the solvation to I. Price Q_2 and e_2 values were determined from these r values and are also included in Table 1. Q_2 values were almost invariable, but e_2 values were found to much vary with the solvents. Straight lines were obtained by plotting these e_2 values against these $\nu_{C=0}$ and $\nu_{C=C}$ values (Fig. 3): the stronger the interaction of I with the solvents, the more the e_2 values increased.

From the kinetics of the polymerizations of St [7] and/or MMA [8], it was suggested that the solvent forms a complex with a growing radical and that this complex determines the stability and the reactivity of the radical. However, our observations seem to suggest that the reactivity is influenced mainly by the solvation onto I unit rather than St.

Table 1 shows an another interesting fact: the reaction temperature altered the r_1 values. r_2 values also varied with the temperature, but the degree of variation was very small in comparison with that of r_1 values. Differences of the activation free energy $(\Delta \Delta F^{\ddagger})$, the activation enthalpy $(\Delta \Delta H^{\ddagger})$ and energy $(\Delta \Delta E^{\ddagger})$ and the activation entropy $(\Delta \Delta S^{\ddagger})$ for the r_1 values were determined from the equation:

FIG. 1. Relationships between log r_1 and $\nu_{C=0}$ or $\nu_{C=C}$ for copolymerization of I with St at 60°C: (\circ) benzene; (\bullet) dioxane; (\bullet) CH₃CN; (\bullet) EtOH; (\bullet) AcOH.

FIG. 2. Relationships between log r₂ and $\nu_{C=0}$ or $\nu_{C=C}$. Symbols are the same as in Fig. 1.

FIG. 3. Relationships between e_2 and $\nu_{C=0}$ or $\nu_{C=C}$. Symbols are the same as in Fig. 1.

$$\log \mathbf{r}_{1} = \log \mathbf{K}_{11}/\mathbf{K}_{12}$$
$$= -\exp\{\Delta\Delta\mathbf{F}^{\ddagger}/\mathbf{RT}\}$$
$$= -\exp\{(\Delta\Delta\mathbf{H}^{\ddagger} - \mathbf{T}\Delta\Delta\mathbf{S}^{\ddagger})/\mathbf{RT}\}$$

where $\Delta\Delta F^{\ddagger} = \Delta F_{11}^{\ddagger} - \Delta F_{12}^{\ddagger}$, $\Delta\Delta H^{\ddagger} = \Delta H_{11}^{\ddagger} - \Delta H_{12}^{\ddagger}$, $\Delta\Delta S^{\ddagger} = \Delta S_{11}^{\ddagger} - \Delta S_{12}^{\ddagger}$, and $\Delta\Delta E^{\ddagger} = \Delta\Delta H^{\ddagger} + RT$ (Table 2). All these values were found to vary with the solvents. It is quite interesting to note that linear relationships were observed by plotting $\Delta\Delta E^{\ddagger}$ and $\Delta\Delta S^{\ddagger}$ values against $\nu_{C=0}$ and $\nu_{C=C}$ values (Figs. 4 and 5): namely, the increase of the interaction of I with the solvents increased the values of ΔE_{11}^{\ddagger} and ΔS_{12}^{\ddagger} and $\Delta \Delta S^{\ddagger}$. Here, it may be assumed that the values of ΔE_{11}^{\ddagger} and ΔS_{11}^{\ddagger} are almost unchanged with the solvents compared with ΔE_{12}^{\ddagger} and ΔS_{12}^{\ddagger} values because I or poly-I radical would be more strongly solvated than St or polystyryl radical due to the strong polar group in I, as described above. In other words, the variation of the K_{11} value with the solvents is assumed to be very small compared with that of the K_{12} value. From this point of view, we tried to get the K_{12} values at 60 and

Parameter	Solvent	$\Delta \Delta E^{\ddagger}$ (kcal/ mole)	∆∆S [‡] (e. u.) ^a	$\Delta \Delta H^{\ddagger}$ (kcal/mole)	∆∆F [‡] (kcal∕ mole) ^a
F 1	Benzene	-2,08	-5.81	-2.73	-0.79
	Dioxane	-2.38	-6.52	-3.03	086
	CH ₃ CN	-2.44	-6.47	-3.10	-0.94
	$C_2 H_5 OH$	-1.33	-3.75	-1.99	-0.74
	СН₃СООН	-0.47	-1,96	-1.13	-0,50
Γ2	Benzene	0.87	0.73	0.21	-0.04
	Dioxane	-0.71	-4.27	-1.37	0.05
	CH₃CN	2.35	3,64	1.69	0,47
	C_2H_5OH	0.63	-1.51	-0.03	0.47
	CH₃COOH	-0.34	-5.22	-1,00	0,73

TABLE 2. Activation Parameters for Copolymerization of I with St

^aAt 60°C.

FIG. 4. Relationships between $\Delta \Delta E^{\ddagger}$ and $\nu_{C=0}$ or $\nu_{C=C}$. Symbols are the same as in Fig. 1.

FIG. 5. Relationships between $\Delta \Delta S^{\ddagger}$ and $\nu_{C=0}$ or $\nu_{C=C}$. Symbols are the same as in Fig. 1.

80°C to be 274 and 420 liter/mole-sec, respectively, which were calculated by least-squares method with all the K₁₁ values cited in the literature [9]; ΔE_{12}^{\ddagger} and ΔS_{12}^{\ddagger} values were obtained from the K₁₂ values thus determined (Table 3). Figures 6 and 7 show the relationships between the values of ΔE_{12}^{\ddagger} and/or ΔS_{12}^{\ddagger} and those of $\nu_{C=0}$ and/or $\nu_{C=C}$ stretching frequencies. Here again, good correlation were observed: namely, ΔE_{12}^{\ddagger} and ΔS_{12}^{\ddagger} values decreased with the increase of the interaction of I with the solvents.

We wish to postulate a hypothesis that all these observations may be explained by taking account of the solvation in the transition state of the K_{12} step. Acrylamide can be described by several resonant structures:

Solvent will stabilize such structures of both the monomer and the resulting polymer radical. If such solvation is important at the ground state of the K_{12} step, i. e., some desolvation would occur at

Solvent	K ₁₂ a	K ₁₂ b	ΔE_{12}^{\ddagger} (kcal/mole) ^a	ΔS_{12}^{\ddagger} (e. u.) ^a -26.8	
Benzene	222.8	407.8	7.07		
Dioxane	201.5	378,4	7,37	-26,1	
CH₃CN	177.9	336.0	7.43	-26.2	
C₂H₅OH	244.6	420.0	6.32	-28.9	
СН₃СООН	360.5	575.3	5.46	-30.7	

TABLE 3. Activation Parameters

^aAt 60° C. ^bAt 80° C.

FIG. 6. Relationships between ΔE_{12}^{\ddagger} and $\nu_{C=0}$ or $\nu_{C=C}$. Symbols are the same as in Fig. 1.

FIG. 7. Relationships between ΔS_{12}^{\ddagger} and $\nu_{C=0}$ or $\nu_{C=C}$. Symbols are the same as in Fig. 1.

the transition state, ΔE_{12}^{\ddagger} and ΔS_{12}^{\ddagger} values might increase with the increase of the interaction of I with the solvent. On the other hand, if the degree of solvation at the transition state is almost equal to that at the ground state, these values, at least ΔE_{12}^{\ddagger} , would be almost unchanged with the solvents. The phenomena observed in Figs. 4-7 seem to imply that an additional stabilization of the transition state of the K₁₂ step would occur by the solvents increasing the interaction with a polar amide group. In the transition state, the polystyryl unit will acquire some positive charge while the I unit will get some negative charge. Such a drift of electrons from the polystyryl carbon to the I unit would be increased with increasing electron-accepting ability of the solvent, and this is expected to increase the ionic character of the transition state. Thus, this will result in the decrease of ΔE_{12}^{\ddagger} and ΔS_{12}^{\ddagger} values.

In the case of r_2 , complicating features are considered to occur because the solvents may influence the values of both K_{22} and K_{21} . This is partly suggested by the fact that the data of Table 1 show a fourfold change in r_2 , compared with a twofold change in r_1 . However, unfortunately, the differences of the r_2 values between 60 and 80°C were too small to permit one to get any activation parameters. Nevertheless, linear correlationships were observed between the values of log r_2 and $\nu_{C=0}$ and/or $\nu_{C=C}$ values (Figs. 1 and 2), suggesting that the reactivity is essentially influenced by the solvation to the I unit. The relationships between the log r_2 values and the polarities of the

FIG. 8. Relationships between $\log r_2$ and Ω values. Symbols are the same as in Fig. 1.

solvents used are shown in Fig. 8, in which the Ω values of the solvents were used as a measure of solvent polarity [10]. The Ω values are regarded as a measure of the solvation ability to a polar structure between at the ground state and at the transition state. Linear correlationships observed in Fig. 8 might suggest that the polarized structure of I or poly-I radical

became important in the transition state.

REFERENCES

- [1] G. Saini, A. Leoni, and S. Franco, <u>Makromol. Chem.</u>, <u>144</u>, 235 (1971).
- [2] G. Saini, A. Leoni, and S. Franco, <u>Makromol. Chem.</u>, <u>147</u>, 213 (1971).
- [3] A. Leoni, S. Franco, and G. Saini, <u>Makromol. Chem.</u>, <u>165</u>, 97 (1973).

- [4] G. Saini, A. Leoni, and S. Franco, <u>Makromol. Chem.</u>, <u>146</u>, 165 (1971).
- [5] Y. Matsubara, K. Enyo, M. Yoshihara, and T. Maeshima, J. Polym. Sci. Polym. Chem. Ed., 13, 913 (1975).
- [6] Y. Matsubara, M. Yoshihara, and T. Maeshima, J. Polym. Sci. Polym. Chem. Ed., 14, 899 (1976).
- [7] G. M. Burnett, G. G. Cameron, and S. N. Joiner, J. Chem. Soc. Faraday I, 69, 322 (1973).
- [8] C. H. Bamford and S. Brumby, <u>Makromol. Chem.</u>, <u>105</u>, 122, (1967).
- [9] R. Korus and K. F. O'Driscoll, in Polymer Handbook, J. Brandrup and E. H. Immergut, Eds., Interscience, New York, 1975, pp. II 45-51.
- [10] J. A. Berson, Z. Hamlet, and W. A. Mueller, <u>J. Am. Chem. Soc.</u>, 84, 297 (1962).

Accepted by editor April 5, 1979 Received for publication May 14, 1979